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Abstract

Lightning Network (LN) is designed to amend the scalability and privacy issues of Bitcoin. It is
a payment channel network where Bitcoin transactions are issued off the blockchain and onion routed
through a private payment path with the aim to settle transactions in a faster, cheaper, and more private
manner, as they are not recorded in a costly-to-maintain, slow, and public ledger. In this work, we design
a traffic simulator to empirically study LN’s transaction fees and privacy provisions. The simulator relies
only on publicly available data of the network structure and capacities, and generates transactions under
assumptions that we attempt to validate based on information spread by certain blog posts of LN node
owners.

Our findings on the estimated revenue from transaction fees are in line with the widespread opinion
that participation is economically irrational for the majority of the large routing nodes who currently
hold the network together. Either traffic or transaction fees must increase by orders of magnitude to
make payment routing economically viable. We give worst-case estimates for the potential fee increase by
assuming strong price competition among the routers. We also estimate how current channel structures
and pricing policies respond to a potential increase in traffic, how reduction in locked funds on channels
would affect the network, and show examples of nodes who are estimated to operate with economically
feasible revenue.

Our second set of findings considers privacy. Even if transactions are onion routed, strong statistical
evidence on payment source and destination can be inferred, as many transaction paths only consist of a
single intermediary by the side effect of LN’s small-world nature. Based on our simulation experiments,
we (1) quantitatively characterize the privacy shortcomings of current LN operation, and (2) propose a
method to inject additional hops in routing paths to demonstrate how privacy can be strengthened with
very little additional transactional cost.

1 Introduction

Bitcoin is a peer-to-peer, decentralized cryptographic currency [27]. It is a censorship-resistant, permission-
less, digital payment system. Anyone can join and leave the network whenever they would like to. Participants
can issue payments, which are inserted into a distributed, replicated ledger called blockchain. Since there
is no trusted central party to issue money and guard this financial system, payment validity is checked by
all network participants. The necessity of full validation severely limits the scalability of decentralized cryp-
tocurrencies: Bitcoin could theoretically process 27 transactions per second (tps) [11]; however, in practice
its average transaction throughput is 7 tps [7]. This is in stark contrast with the throughput of mainstream
payment providers; for example, in peak hours Visa is able to achieve 47,000 tps on its network [35].

To alleviate scalability issues, the cryptocurrency community is continuously inventing new protocols and
technologies. A major line of research is focused on amending existing currencies without modifying the
consensus layer by introducing a new layer, i.e., off-chain transactions [23, 24, 8]. These proposals are called
Layer-2 protocols: they allow parties to exchange transactions locally, without broadcasting them to the
blockchain network, updating a local balance sheet instead and only utilizing the blockchain as a recourse
for disputes. For an exhaustive review of off-chain protocols, refer to [13].

Among these proposals, the most prominent ones are payment channel networks (PCN), in which nodes
have several open payment channels, being able to connect to all nodes, possibly through multiple hops.
The most popular instantiation of a PCN is Bitcoin’s Lightning Network (LN) [29], a public, permissionless
PCN, which allows anyone to issue Bitcoin transactions without the need to wait for several blocks for
payment confirmation and currently with transaction fees orders of magnitude lower than on-chain fees. LN
is suitable for several application scenarios, for instance, micropayments or e-commerce, with the intent to
make everyday Bitcoin usage more convenient and frictionless. LN’s core value proposition is that Bitcoin
users can send low-value payments instantly in a privacy-preserving manner with negligible fees, which has
led to quite a widespread adoption of LN among Bitcoin users.
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The main difficulty with analyzing how LN operates is that the exact transaction routes are crypto-
graphically hidden from eavesdroppers due to onion routing [16]. LN can only be observed through public
information on nodes and channel openings, closings, and capacity changes. The actual amount of Bitcoins
circulated in LN is unknown, although in blog posts, some node owners publish high-level statistics, such as
their revenue [20, 3], which can be used as grounds for estimation.

To analyze LN efficiency and profitability, we designed a traffic simulator for LN to analyze the routing
costs and potential revenue at different nodes. We assigned roles to nodes by collecting external data1,
labeling nodes as wallet services, shops, and other merchants. Using node labels, we simulated the flow of
Bitcoin transactions from ordinary users towards merchants over time, based on the natural assumption that
transactions are routed through the path that charges the minimum total transaction fee. By taking the
dynamically changing transaction fees of the LN nodes into account, we designed a method to predict the
optimal fee pricing policy for individual nodes in case of the cheapest path routing.

To the best of our knowledge, there has been no previous empirical study on LN transaction fees.
Our traffic simulator hence opens the possibility for addressing questions of transaction routes, amounts, fees,
and other measures otherwise depending upon strictly private information, based solely on the observable
network structure. By releasing the source code of our tool, we allow node owners to fit various parameters
to their private observation on LN traffic. In particular, in this paper the simulator enables us to draw two
major conclusions:
Economic incentives. Currently, LN provides little to no financial incentive for payment routing. Low

routing fees do not sufficiently compensate the routing nodes that essentially hold the network to-
gether. Our results show that in general, transaction fees are underpriced, since for many possible
payments there is no alternative path to execute the transaction. We also give estimates of how the
current network and fee structure responds to increase in traffic and decrease in channel capacities,
thus assessing the income potential in different strategies. We provide an open source tool for nodes
to experimentally design their channels, capacities, and fees by incorporating all possible information
that they privately infer from the traffic over their channels.

Privacy. We quantitatively analyze the privacy provisions of LN. Despite onion routing, we observe that
strong statistical evidence can be gathered about the sender and receiver of LN payments, since a
substantial portion of payments involve only a single routing intermediary, who can easily de-anonymize
participants. We find that using deliberately suboptimal, longer routing paths can potentially restore
privacy while only marginally increasing the cost of an average transaction, as it is partially already
incorporated in other implementations of the Lightning protocol [12].

The rest of the paper is organized as follows. In Section 2, we review the growing body of literature
on PCNs and specifically on LN. In Section 3, we provide a brief background on LN and its fee structure.
In Section 4, our traffic simulator is presented. We discuss our experimental results in three sections. We
investigate the price competition and the potential to increase fees, under various assumptions, in Section 5.
We estimate the profitability of the central router nodes under estimated current and potentially increased
future traffic in Section 6. Finally, we estimate the amount of privacy shortcomings due to too short paths
and potential mitigations in Section 7. We conclude our paper in Section 8.

2 Related Works

To the best of our knowledge, we have conducted the first empirical analysis on LN transaction fees, similar
to the way empirical and theoretical studies on on-chain transaction fees have been conducted during the
early adoption of cryptocurrencies. Möser and Böhme conducted a longitudinal study on Bitcoin’s nascent
transaction fee market [26]. Kaskaloglu asserted that near-zero transaction fees cannot last long as block
rewards diminish [15]. Easley et al. developed a game-theoretic model to explain the factors leading to
the emergence of transactions fees, and provided empirical evidence on the model predictions [9]. Recently,
BitMEX, a single LN node, has experimented with setting different transaction fees to measure the effect on
routing revenue [3], which shows a similar pattern to our simulation experiments.

Unlike on-chain transactions, the LN transaction fee market is not yet consolidated. Some actors behave
financially rationally, while the vast majority exhibit altruistic behavior, which parallels the early days of
Bitcoin [26]. Similarly to on-chain fees, we expect to see more maturity and a similar evolution in the LN
transaction fee market in the future.

Even before the launch of LN, many works studied the theoretical aspects of PCNs. Branzei et al. studied
the impact of LN on Bitcoin transaction costs [5]. They conjectured a lower miner income from on-chain
transaction fees as users tend to use and issue transactions on LN. In [18], the transaction fees of various
payment channels are compared, however, without reference to the underlying network dynamics.

1Source: https://1ml.com
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Depleted payment channels account for many efficiency issues in PCNs. Khalil and Gervais devised a
handy algorithm to revive imbalanced payment channels without opening new ones [17].

PCNs can also be considered to be creation games. A user might decide to create a payment channel to
a destination node or just route the payment in the already existing PCN. The former is more expensive;
however, repeated payments can amortize the on-chain cost of opening a payment channel. Avarikioti et al.
found that given a free routing fee policy, the star graph constitutes a Nash equilibrium [2]. In a similar
game-theoretic work, the effect of routing fees was analyzed [1]. It was again found that the star graph is a
near-optimal solution to the network design problem.

Even though transactions in LN are not recorded on the blockchain, they do not provide privacy guar-
antees. As early as 2016, Herrera et al. anticipated the privacy issues emerging in a PCN [14]. Single-
intermediary payments do not provide privacy, although they have higher utility. Tang et al. asserts that a
PCN either operates in a low-privacy or a low-utility regime [34]. Although a recently devised cryptographic
protocol solves the privacy issues of single-intermediary routed payments [33], the protocol is not yet in use
due to its complexity of implementation.

After the launch of LN, several studies have investigated the graph properties of LN [32, 31, 22]. They
described the topology of LN at an arbitrarily chosen point in time and found that LN exhibits a hub and
spoke topology, and its degree distribution can be well approximated with a scale-free distribution [32, 31].
Furthermore, these works assessed the robustness of the network against various types of attack strategies:
they showed that LN is susceptible to both node [32, 22] and channel [31] removal based attacks. These
works are restricted to a static snapshot of LN. The lack of temporal data has largely limited the insights
and results of these contributions.

In a Youtube video [28], an estimate of the routing income is given based on the assumption that the
payment probability between any node pair is the same. As it is easy to see, under this assumption the
routing income of a node is proportional to its betweenness centrality. In our simulation experiments, we
will explicitly compare our prediction with the one based on betweenness centrality and show how the finer
structure of our estimation procedure yields more plausible results.

At the time of writing, four research groups published results on payment channel network simulators,
each serving purposes very different from ours. Out of them, the simulator of Branzei et al. [5] is the only one
that has pointers to publicly available resources. Their simulator only considers single bidirectional channels
or a star topology, and its main goal is to analyze channel opening costs and depletion. This simulator is
extended in [10] to generate and analyze Barabási-Albert graphs as underlying networks. CLoTH [6] is able
to provide performance statistics (e.g., probability of payment failure on a given PCN graph); however, it does
not analyze transaction fees, profitability, optimal fee policy, and privacy provisions of LN. In contrast, our
LN traffic simulator can produce insights in those areas as well. Finally, the simulator in [37] is a distributed
method to minimize the transaction fee of a payment path, subject to the timeliness and feasibility constraints
for the success ratio and the average accepted value of the transactions.

3 Routing and Fees in Lightning Network Payment Channels

A payment channel allows users to make multiple cryptocurrency transactions without committing all
of the transactions to the blockchain. In a typical payment channel, only two transactions are added to
the blockchain, but theoretically, an unlimited number of payments can be made between the participants.
Parties can open a payment channel by escrowing funds on the blockchain for subsequent use only between
those two parties. The sum of the individual balances on the two sides of the channel is usually referred to
as the capacity.

We illustrate the operation of a payment channel by an example. Let Alice and Bob escrow 1 and 2
tokens respectively, by committing a transaction to the blockchain that sets up a new channel. Once the
channel is finalized, Alice and Bob can send escrowed funds back and forth by revoking the previous state
of the channel and digitally signing the new state updated by the transacted tokens. For example, Alice can
send 0.1 of her 1 token to Bob, so that the new channel state is (Alice=0.9, Bob=2.1). Once the parties
decide to close the channel, they can commit its final state through another blockchain transaction.

Maintaining a payment channel has an opportunity cost since users must lock up their funds while the
channel is open, and funds are not redeemable until the channel is closed. Hence, it is not practical to expect
users to maintain a channel with every individual with whom they may ever need to transact.

In a payment channel network (PCN), nodes have several open payment channels between each other;
however, not necessarily with all other nodes. The network of bidirectional payment channels allows two
parties to exchange funds even if they do not have a direct payment channel. For example, if Alice has a
balance of 1 token with Ingrid, and Ingrid has a balance of 2 tokens with Bob locked in a payment channel,
then Alice can route payments to Bob through Ingrid up to the maximum of the balances of Alice and

3



Ingrid. Assuming that Alice sends 0.2 tokens to Bob, after routing we have the following channel balances:
Alice=0.8, Ingrid=0.2 on the first channel and Ingrid=1.8, Bob=0.2 on the second channel.

In a payment channel, cryptographic protections are used to ensure that channel updates in both directions
are executed atomically, i.e., either both or neither of them are performed [13]. In addition, incentive-based
protections are also implemented to prevent users from stealing funds in a channel, e.g., by committing a
revoked state. Similar techniques allow payment routing for longer paths. Furthermore, payment router
intermediaries are financially motivated to relay payments as they are entitled to claim transaction fees after
each successfully routed payment.

LN as a PCN consists of nodes representing users and undirected, weighted edges representing payment
channels. Users can open and close bidirectional payment channels between each other and route payments
through these connections. Therefore, LN can be modeled as an undirected, weighted multigraph since nodes
can have multiple channels between each other. The weights on the edges correspond to the capacity of the
payment channels.

In LN only capacities of payment channels are known publicly, individual balances are kept secret. This
is because if individual balances are known, balance updates would reveal successful transactions, hence
preventing transaction privacy.
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Figure 1: LN’s increasing popularity and adop-
tion in its first 17 months.
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Figure 2: Average degree and effective diameter
in LN, as the function of time.

3.1 Routing in LN and Fee Mechanism

LN applies source routing, meaning that it is always the sender who decides the payment route towards the
intended recipient. Packets are onion routed, which means that intermediary nodes only know the identity
of their immediate predecessor and successor in the route. Therefore, from a privacy perspective, nodes
are incentivized to avoid single-intermediary paths, as in those cases intermediaries are potentially able to
identify both the sender and the receiver.

LN provides financial incentives for intermediaries to route payments. In LN there are two types of fees
that a sender pays to the intermediaries in case the transaction involves more than one payment channels.
Nodes can set and charge the following fees after each routed payments:
Base fee: a fixed fee denoted as baseFee, charged each time a payment is routed through the channel.
Fee rate: a percentage fee denoted as feeRate, charged on the value txValue of the payment.
Therefore, the total transaction fee txFee to an intermediary can be obtained as:

txFee = baseFee + feeRate · txValue. (1)

We note that the base fee and fee rate is set by individual users, thus forming a fee market for payment
routing. Furthermore, we remark that Equation 1 does not hold for all routing algorithms. However, we do
not consider other fee structures in our simulator, as currently alternative routing algorithms are not widely
adopted throughout the network.
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3.2 Data

Throughout our work, we analyze two main data sources that are both available online2. First, we gathered
an edge stream data that describes every payment channel opening and closure from block height 501,337
(in December 28, 2017) to 576,140 (in May 15, 2019). Second, we collected snapshots of the public graph
using the lnd client and utilized snapshots taken by Rohrer et al [31] as well. We highlight that only the
latter dataset contains transaction fee information. Thus, the experiments in Sections 4-7 are only based on
40 consecutive LN graph snapshots from 2019 February and March.

We note that according to some estimates, 28% of all channels are private [30], meaning that their
existence can only be recognized by the two ends. In our analysis, we have no information about private
payment channels; however, the same holds for all the other network participants as well. Hence, we do not
expect a significant bias in our results, as presumably those channels have private use and do not participate
in carrying the global network traffic.

We labeled LN nodes by relying on the tags provided by the node owners3. This allows us to distinguish
between ordinary users and merchants. We assume that merchants receive payments more often than
regular users. This is essential in understanding how popular payment channels are depleted throughout LN
by repeated use in one direction. The number of merchant nodes in the union of all 40 snapshots is 169.

First we describe the graphs defined based on the 40 consecutive LN graph snapshots from 2019 February
and March. We consider a minimum meaningful capacity α = 60 000 (approximately USD 5) and exclude
edges with capacity less than α in G as they cannot be used in payments with value α.4 Although LN
channels are bidirectional, in our experiments we consider two directed edges, so that we can use channels
in one direction if the capacity is exhausted in the other direction. We also ignore edges in the direction
where they are flagged as disabled in the data. The properties of the LN network, averaged over the 40 daily
snapshots, is as follows:
• Number of the union of all nodes: 4 787;
• Average number of nodes in a day: 3 358;
• Non-isolated nodes after filtering disabled edge directions and edges with capacity less than 60 000 SAT:

3 132;
• Size of the largest strongly connected component: 2 206;
The degree distribution of LN follows power law. The effect of preferential attachment, the phenomenon

that new edges tend to attach to high degree nodes, is clearly seen in Figure 3. Ever since LN was launched, its
popularity has grown steadily (Figure 1). This growth in popularity has caused the average degree increasing
and the diameter decreasing over time, a “densification” phenomenon observed for a wide class of general
networks in [19]. The average degree steadily increases, while the effective diameter decreases only after a
first initial expansion phase (Figure 2), following the densification power law (Figure 4).

We observe that the higher its degree, the longer a node participate in LN, see Figure 5. Additionally,
the channels adjacent to merchants have a shorter average lifetime (5198 blocks) than the average channel
lifetime (5474 blocks), see the difference of the full distribution in Figure 6. We suspect that subsequent

2See: https://github.com/ferencberes/LNTrafficSimulator
3Source: https://1ml.com
4Note that at the time of writing, atomic multipath payments (AMPs) are not implemented. AMPs would allow one to split

a payment value into multiple smaller amounts and subsequently send those payments to the receiver via multiple payment
paths through different intermediaries. The AMP protocol will guarantee that either all sub-payments are executed or none of
them.
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payments deplete the channels of the merchants, who then close these channels, collect their funds, and open
new channels.

We observe strong central point dominance in LN (Figure 7), which indicates that LN is more centralized
than a Barabási-Albert or an Erdős-Rényi graph of equal size. This is in line with the predictions of [2, 1],
affirming that PCNs lean to form a star graph like topology to achieve Nash equilibrium.

Counterintuitively, LN also exhibits high transitivity, also known as global clustering coefficient, see
Figure 8. One would expect that nodes have no incentive to close triangles, as they might as well just route
payments along already existing payment channels. However, we observe that the vast majority (68.76%)
of all created payment channels connect nodes only 1 hop (distance 2) away from each other, see Figure 9.
We believe that in most cases this is caused by replacing depleted payment channels. The high transitivity
in LN is especially striking when it is compared to other social graphs. LN has roughly the same clustering
coefficient as the YouTube social network [25].

4 Lightning Network Traffic Simulator

In this section, we introduce our main contribution, the LN Traffic Simulator, which we designed for daily
routing income and traffic estimation of network entities. Simulation is necessary to analyze the fine-grained
structure, since the key concept of LN is privacy: data will never include transaction amounts, sources, and
targets in any form, and it is very unlikely that it will give information on the capacity distribution over
the channels, since that would leak information on the actual transactions. Hence we need a simulator to
understand the capabilities and limitations of the network to route transactions.

By simulating transactions at different traffic volumes and transaction amounts, we shed light on the fee
pricing policies of major router entities as well as on privacy considerations, as we will describe in Sections 5–7.

In our simulator, we make the assumption that the sender nodes always choose the cheapest route to
execute their transactions. Due to the source routing nature of LN, nodes are expected to possess the
knowledge of network structure and current transaction fees to make price optimal decisions. Note that in
the LN client5, the source node selects the routing for their transactions. For example, the sender node may
choose the shortest instead of the cheapest path to the target if speed is more important than the transaction
cost, and our simulator can be modified accordingly.

The main goal of our traffic simulator is to generate a certain number of transactions, given as an input
parameter, by using only the information on the edges and their capacities in a given LN snapshot. To
generate transaction sources and targets, we predefine the fraction of the transactions that lead to merchants
based on the assumption that the majority of the transactions correspond to money spent at shops and
service providers. We fix the amount as constant to reduce the complexity of the simulation model.

We acknowledge that using constant payment amounts is a strong assumption. One could consider various
distributions such as Pareto, power law, Poisson, as in previous works [34]. However, assumptions on the
distributions as well as their parameter settings greatly increase the complexity of the experimentation, and
cannot be empirically validated, since payment values are not public. We found the necessity to incorporate
correlations of the amounts with node sizes and roles particularly troublesome. We note that constant
amounts are also capable of capturing larger values by repeated payments from the same node. Finally,
any time some entities obtain reliable estimates on the payment value distribution, they can conduct the
corresponding experiments with our open source simulator.

Formally, we use the following notation:
• G, a daily graph snapshot of the LN with channels represented by pairs of edges in both directions;

disabled directions and too low capacity edges are excluded;
• M , the set of merchant nodes defined in Section 3.2;
• τ , the number of random transactions to sample;
• α, the (constant) value of each transaction, in satoshis6;
• ε, the ratio of merchants in the endpoints of the random transactions.
The available data only includes the total channel capacity but not its distribution between the endpoints.

Thus, before simulation we randomly initialize the capacity between the channel endpoints. For example,
if Γ is the total capacity of the channel between nodes u and v, we let 0 ≤ γ(uv) ≤ Γ and 0 ≤ γ(vu) ≤ Γ
denote the maximum value in satoshis, which can be routed from u to v and vice versa. Both γ(uv) and
γ(vu) change after each transaction that uses this channel while maintaining γ(uv) + γ(vu) = Γ at all times.

If an edge has capacity less than α in a direction, that is γ(uv) < α, the edge direction uv is depleted. In
the simulation, a depleted edge uv cannot be used before a payment is made in the opposite direction vu,

5See https://github.com/lightningnetwork/lnd and https://github.com/ElementsProject/lightning.
6Each Bitcoin (BTC) is divisible to the 8th decimal place, so each BTC can be split into 100,000,000 units. Each unit of

Bitcoin, or 0.00000001 Bitcoin, is called a Satoshi. A satoshi is the smallest unit of Bitcoin, see https://satoshitobitcoin.co/.
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in which case γ(uv) ≥ α will hold. Optionally, in Section 6, we will also investigate the effect of removing
this constraint and allow the simulation to use an edge direction without limits. We also note that routers
can balance payment channels without closing and reopening existing ones by finding cycles containing a
depleted channel and route funds on a circular payment path [17], however, this option is not implemented
in the current version of our simulator.

We start the simulation by first sampling τ transactions, each of amount α. First we select τ senders
uniformly at random from all nodes. Recipients are selected by putting emphasis on merchants M : we
choose ε · τ merchants with probability proportional to their degree in addition to (1− ε) · τ recipients that
are selected uniformly at random from all nodes including both merchants and non-merchants. Finally, we
randomly match senders and recipients.

Given the transactions, we are ready to simulate traffic by finding the cheapest paths P = (s =
u0, u1, u2, . . . , uk = t) from sender s to recipient t with the capacity constraint γ(uiui+1) ≥ α for i = 0 . . . k−1.
Then, node statistics (e.g., routing income, number of routed transactions) are updated for each intermedi-
ary node {u1, u2, . . . , uk−1} with respect to the latest transaction. Finally, for i = 0 . . . k − 1 the value of
γ(uiui+1) is decreased while γ(ui+1ui) is increased by the transaction amount α in order to keep available
node capacities up to date. As we work with daily graph snapshots, the simulation mimics the daily traffic
on LN.

The simulated routing income of a node will arise as the sum of the payment costs of its inbound channels.
The cost of a payment can be obtained by substituting txValue = α in the transaction fee Equation (1),
we obtain the transaction fee of an edge as baseFee + feeRate · α. We note that in this work we give no
estimate on the cost of opening the channels, instead, we stop using depleted edges as long as a payment in
the opposite direction reactivates them. We will assess the effect of channel depletion on routing income in
Section 6, where we will allow the simulation to use an edge direction without capacity limits.

Due to several random factors in the simulation, including source and target sampling and capacity
distribution initialization, we run the traffic simulator ten times. We use 40 consecutive daily snapshots in
our data. We always report the mean node statistics (e.g., node routing income, daily traffic) of LN entities
over our sets of 400 simulations for each parameter setting.

4.1 Feasibility Validation and Choice of Parameters

We validate our simulation model by comparing published information with our estimates for the income
and traffic of the most relevant LN router entities. These nodes are responsible for keeping the network
operational by routing most of the transactions. Our key source of information is the blog post [20] on
LNBIG.com, the most relevant routing entity who owns several nodes on LN as well as approximately half
of the total network capacity:
• In a typical day, LNBIG.com serves 200–300 transactions through all of its nodes, rarely exceeding 600

in a single day.
• On routing commissions, LNBIG.com earns 5, 000–10, 000 satoshis per day.
We managed to reproduce daily traffic and routing income similar to LNBIG.com by sampling τ = 5, 000

transactions with α = 60, 000 satoshis (approximately 5 U.S. dollars) and merchant ratio ε = 0.8. The
estimated revenue, as the function of the parameters, is shown in Figure 10, also showing the target daily
income and traffic ranges stated by LNBIG.com [20].

To summarize, simulating a few thousand micro-payments with mostly merchant recipients resulted in
similar traffic and revenue as described over the nodes of LNBIG.com. We choose τ = 5, 000, α = 60, 000,
and ε = 0.8 as default parameters of our traffic simulator in order to draw some conclusions on LN node
profitability and transaction privacy in Sections 5–7.

4.2 Traffic Simulator Response to Parameter Changes

Next we examine the stability of our traffic simulator for different ratios of merchant endpoints ε. We note
that the set of transaction recipients can be sampled uniformly at random by choosing ε = 0.0, while in case
ε = 1.0, every sampled transaction has merchant endpoints. Thus, by increasing the value of ε the traffic can
be centralized towards LN service providers. As determined in the previous subsection, we set the remaining
parameters τ = 5, 000 and α = 60, 000.

Our goal is to observe stable traffic characteristics throughout a sequence of days, measured as the
correlation of node statistics across days. Towards this end, we measure the following node level summaries
of the simulated traffic every day:
• Routing traffic: the number of transactions that are forwarded by a given node;
• Routing income: the sum of all transaction fees that a given node charges for payment routing;
• Sender traffic: the number of transactions that are initiated by a given node;
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Figure 10: Mean estimated routing income and number of routed payments of LNBIG.com entity with
respect to traffic simulator parameters. The default parameter setting (daily transaction count τ = 5000,
single transaction amount α = 60, 000 satoshis, and merchant endpoint ratio ε = 0.8) is marked by vertical
black dotted lines. The daily income and traffic ranges stated by LNBIG.com [20] are marked by horizontal
red dashed lines.

• Sender fee: the sum of all transaction fees that a given node has to pay for his transactions to be
forwarded by intermediary nodes.

In Figure 11, the Spearman, Kendall, unweighted and weighted Kendall-tau correlations of routing traffic
and income are shown for ε = 0.0, 0.2, 0.5, 0.8, and 1.0. For the definitions, see [36].

We observe high weighted Kendall-tau correlation, which means that the set of nodes with the highest
routing income and traffic are very similar regardless of the ratio of merchants ε among transaction recipients.

By contrast, we observe low values of (unweighted) Kendall-tau. Since the set of nodes is dominated by
low-traffic ones, the Kendall-tau value also depends mostly on the simulated traffic amount of these nodes.
Hence, low Kendall-tau implies that nodes with low traffic and income fluctuate as transaction endpoints are
selected at random. Most of these nodes have probably no traffic when transactions are centralized towards
service providers (ε = 1.0).

In Figure 12, we assess the stability of the simulation by showing the mean correlation of four different
node statistics over 10 independent simulations for each snapshot. Two of the statistics, routing income
and routing traffic, show high correlation for all values of ε, which means that nodes with high daily routing
income and traffic are stable across independent experiments. By contrast, sender transaction fees and sender
traffic especially vary highly, which is a natural consequence of uniform random sampling for source selection.
By our measurements, ratio ε only affects the sender transaction fee. By increasing the value of ε, more and
more transactions are centralized towards merchants. Thus, sender nodes pay the transaction fees to more
or less the same set of intermediary nodes, which results in higher sender transaction fee correlations.

Finally, we compare our simulated routing income with simple estimates based on the properties of
the nodes in LN as a graph. In a Youtube video, Pickhardt [28] shows the routing income of a node is
proportional to its betweenness centrality in case the payment probability between any node pair is the
same. In Figure 13, we observe that our simulated routing income with parameters α = 60, 000, τ = 5000,
ε ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} is well correlated with the betweenness centrality of a node. However, the
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Figure 11: Correlation of simulated daily node routing traffic (top three) and income (bottom three)
with respect to different ratio of merchants among transaction endpoints ε.
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Figure 12: Mean Spearman, unweighted and weighted Kendall-tau cross correlation of node statistics
over the 10 independent simulations with respect to the ratio of merchants as transaction endpoints
(ε ∈ {0.0, 0.5, 0.8, 1.0}).

Spearman correlation decreases with larger ε, which means that since payment endpoints are biased towards
merchants, we need a more accurate estimation method. In Figure 14, we show two more node statistics,
degree and total node capacity, both correlating much weaker to our prediction than betweenness centrality.

In summary, the set of nodes with high routing income and traffic are consistent across independent
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chant ratio ε among payment endpoints.

simulations regardless of the ratio of merchants among sampled transaction endpoints, while randomization
naturally has a big influence on the low traffic end of the network. The low traffic end can be estimated
by incorporating the role of a node in the simulation, as we do in a very simple way by controlling traffic
towards merchants with the parameter ε.

5 Transaction Fee Competition

Our first analysis addresses the observed and potential profitability of LN, which is questioned in several
blog posts [3, 20]. A core value proposition of LN is that Bitcoin users can execute payments with negligible
transaction fees. This feature may be cherished by payment initiators, but in case of insufficiently low network
traffic, it could be unprofitable for router entities.

Our goal is to assess how transaction costs depend on topology and to what extent they are targets to
competition. To measure transaction fee price competition, we use our traffic simulator to estimate daily
node routing income and traffic volume for the 40 consecutive LN snapshots in our data. Our findings on
how revenue from routing depend on transaction fees shows a similar shape as experimented for BitMEX, a
single LN node [3].

We use the parameters of the simulator that we calibrated based on published information on the income
of certain nodes [20] in Section 4.1. Our analysis in this section confirms that transaction fees are indeed
very low, and they are potentially underpriced for relevant router nodes.

To analyze the competition that a node x faces in the network, we compare the simulated traffic in a
daily LN snapshot G and in the graph Gx that we obtain by removing node x from G. By attempting to
route the same set of τ transactions on G and Gx, first of all we measure the number of failed payments ϕ(x)
that were originally routed through x but are incapable of reaching destination when x is out of service. For

each node x, the failure ratio of individual node traffic is ϕ(x)
τ(x) where τ(x) denotes the number of transactions

through x in the original simulation.
In Figure 15, we show the average ratio of the traffic of a node that has no alternate routing path,

for five income groups defined as the top 1 − 10, 11 − 20, 21 − 50, 50 − 100, and 101− router nodes with
highest simulated income. For each group, the average is taken over its nodes x, considering the fraction of

transactions ϕ(x)
τ(x) that cannot be routed anymore after removing x. It is interesting to observe that for the

first three groups, the average ratio of traffic with no alternate path is at least 0.3. This means that even
if the 100 routers with highest simulated traffic increased their transaction fees close to on-chain fees, the
majority of payment sources would have no less expensive option to route their payments.

In the next experiment, we estimate the extent transaction prices are potentially limited by the com-
petition among alternate routes in LN. We take a highly pessimistic view by assuming that a transaction
that can only be routed by relying on an intermediary node x will select a payment method outside LN
immediately if x increases its transaction fees. For other transactions, we search for the next cheapest route
that avoids x and assume that x could increase its fees to match the second cheapest option. In other words,
our analysis ignores the failed transactions ϕ(x) and is based on the remaining τ(x)− ϕ(x) where payment
routing avoiding node x being available. For each of these transactions, the difference of the total fee δ can
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Figure 16: The maximal possible base fee increment (β∗, left), and the corresponding income gain (right)
in satoshis, given the price competition assumptions in Section 3.1. Income groups are defined as the top
1− 10, 11− 20, 21− 50, 50− 100, and 101− router nodes with highest simulated income.

be calculated from the fees of the original path in G and the alternative route in Gx.
Our assumption is that if node x increases its base fee by β, transactions with δ ≥ β are still willing to

pay for the additional costs, while for δ < β, payments will be routed on the cheaper alternative path, where
δ is the fee difference to the cheapest path avoiding x. Thus, by observing β ≥ 0 at different thresholds, we
propose an optimal β∗ base fee increment for each router node.

We estimate the optimal fee increase β∗ for each node over multiple snapshots and independent simula-
tions. For the five node income groups that we previously defined in Figure 15, we show the average optimal
base fee increment as well as the corresponding routing income gain in Figure 16.

The transaction fee data shows that the current LN fee market is still immature, as the majority of all
channels apply default base fee (1 SAT) and fee rate (10−6 SAT), while the capacities are usually set higher
than the default value (100000 SAT) in the lnd client, see Figure 17.

In our measurements, we find that nodes with high routing income could still increase their base fee by
a few hundred satoshis, thus generating an average gain of more than 10,000 satoshis in their daily income.
Despite the low gain, our assumption is that it could get orders of magnitude higher if router nodes increased
their base fee in succession, which could have a major impact on the competition for transaction costs.

6 Profitability Estimation of Central Routers

Router entities are an essential part of LN. They are responsible for keeping the network operational by
forwarding payments. In this section, we estimate the current routing revenue of these central nodes, and
give predictions how their income will change if the traffic over the current network increase. Note that our
technique can also be used for node owners to predict the effect of opening and closing channels as well as
changing capacities and transaction fees.
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their default values in the lnd client (100000 SAT, 1 SAT, and 10−6 SAT), respectively.

Central routing nodes are binding a huge amount of financial resources in the form of channel capacity,
which enables them to serve high volumes of traffic. In general, router entities consist of a single node, but
sometimes they have multiple LN nodes. For example, LNBIG.com owns 25 nodes in our dataset. One of
our main motivations was to estimate the annual return of investment (RoI) for entities by simulating daily
traffic over several snapshots. In our measurements we calculate annual RoI as follows:

RoI =
estimated daily routing income in satoshis× 365

total amount of satoshis bound by channel capacities
. (2)

By simulating traffic with parameters τ = 5, 000, α = 60, 000, and ε = 0.8, we estimated the daily average
income and traffic for each router. From these statistics and additional entity capacity data downloaded
from 1ML.com, we estimate annual RoI in Table 1. We present all router entities with at least 50 satoshis of
simulated income and 10 forwarded transactions per day on average. For each of these nodes, the following
statistics are presented:
• Entity capacity as downloaded from 1ML.com. Capacity fraction is the fraction of entity capacity

and total network capacity. Remarkably, half of the total network capacity is bound by the nodes of
LNBIG.com.

• Average transaction fee, daily income, and daily traffic, based on the simulated mean cost in satoshis
that a given entity charges for each payment routing over his channels during the observed 40 snapshots,
in ten random simulations, as explained in Section 3.1.

• Annual RoI calculated from simulated daily income and entity capacity by Formula 2.
• Economical fee in satoshis is the amount required on average to reach an annual 5% RoI. Fee ratio is

the ratio of the economical and the actual transaction fees. Higher values mean lower profitability.
• Three columns show the rank of the nodes in decreasing order of annual RoI, total fee, and traffic.
Based on our findings, the annual RoI is way below 5% for almost all relevant entities. Only rompert.com

achieved a comparable amount of annual RoI (3.45%), who indeed applies orders of magnitude higher fees
than others. It is interesting to see that despite its high transaction fees, it has the highest daily traffic
in the simulation. Note that rompert.com applies base fees close to onchain fees, which may invalidate the
assumptions of our simulator if participants fall back to onchain rather than paying rompert.com routing
fees.

Compared to the most profitable node rompert.com, the total estimated traffic of LNBIG.com through
its 25 nodes is only one third. The main reason behind low annual RoI is low transaction fees. Table 1
shows that for forwarding α = 60, 000 satoshis, most of these entities ask for less then 100 satoshis, which is
less than 0.2% of the payment value. Very low fees may uphold LN’s core value proposition, but they are
economically irrational for the central routers holding the network together. Based on our simulations, for
several routers (e.g., LNBIG.com, yalls.org, ln1.satoshilabs.com, etc.), fees should be in the range of a few
thousand satoshis to reach a 5% annual RoI, which is approximately the magnitude of on-chain transaction
fees (1,000-2,000 satoshis7).

Capacity overprovisioning also causes low RoI. For example, extremely large LNBIG.com capacities result
in low RoI, despite the reasonable daily income reported. By using our traffic simulator, we observed that
the router entities of Table 1 can increase their RoI by reducing their channel capacities. For each of these
routers, we estimated the changes in revenue (Figure 18) and RoI (Figure 19), after reducing all of its edge
capacities to 50, 10, 5, 1, 0.5, 0.1% of the original value, with the assumption that all other routers keep their

7See https://bitcoinfees.info/.
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Table 1: Estimated daily income, traffic and annual RoI for relevant router entities. Columns are explained
in Section 6. Note that currently on-chain transaction fees for a regular transaction (2 inputs, 2 outputs) is
in the range of 1000-2000 satoshis.
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Entity RoI gain Capacity Income Original Optimal Optimal Original
name (times) fraction fraction RoI (%) RoI (%) RoI rank RoI rank

lnbig.com 15.263039 0.01 0.152630 0.004033 0.061557 5.0 17.0
Bitrefill.com 8.815776 0.01 0.088158 0.001121 0.009881 21.0 25.0
yalls.org 7.274128 0.05 0.363706 0.041199 0.299685 3.0 4.0
fairly.cheap 5.527895 0.01 0.055279 0.001950 0.010781 18.0 24.0
LightningTo.Me 4.428039 0.05 0.221402 0.002317 0.010258 20.0 20.0
ln.BitSoapBox.com 4.270262 0.10 0.427026 0.002276 0.009720 22.0 21.0
ACINQ 3.492428 0.05 0.174621 0.002975 0.010391 19.0 18.0
LightningPowerUsers.com 3.374553 0.10 0.337455 0.005514 0.018608 13.0 16.0
Blockstream Store 3.211826 0.10 0.321183 0.017364 0.055771 6.0 8.0
ln1.satoshilabs.com 3.165573 0.05 0.158279 0.016167 0.051176 8.0 9.0
There be dragons here 3.064046 0.05 0.153202 0.018050 0.055307 7.0 7.0
Electrophorus [W C B] 2.229242 0.10 0.222924 0.009425 0.021010 11.0 14.0
lightning-roulette.com 1.724278 0.10 0.172428 0.002421 0.004174 23.0 19.0
BlueWallet 1.672075 0.05 0.083604 0.010588 0.017704 15.0 13.0
zigzag.io 1.511212 0.10 0.151121 0.258036 0.389947 2.0 2.0
OpenNode 1.458822 0.50 0.729411 0.021519 0.031392 10.0 6.0
tady je slushovo 1.445600 0.50 0.722800 0.010622 0.015355 16.0 12.0
BOLTENING.club 1.430646 0.10 0.143065 0.002166 0.003098 24.0 22.0
btc.lnetwork.tokyo 1.422923 0.50 0.711462 0.033247 0.047307 9.0 5.0
CoinGate 1.400418 0.50 0.700209 0.002129 0.002981 25.0 23.0
rompert.com 1.330968 0.50 0.665484 3.458924 4.603716 1.0 1.0
ORANGESQUIRREL 1.313521 0.50 0.656760 0.104882 0.137764 4.0 3.0
tippin.me 1.297128 0.50 0.648564 0.016009 0.020766 12.0 10.0
1ML.com node ALPHA 1.273918 0.50 0.636959 0.009021 0.011491 17.0 15.0
Sagittarius A 1.216862 0.50 0.608431 0.014715 0.017906 14.0 11.0

Table 2: Estimated optimal channel capacity reduction for maximal RoI of the routers of Table 1. Capac-
ity fraction is the estimated optimal fraction of the original channel capacities and income fraction is the
estimated fraction of the original income by using reduced channel capacities.

capacities. In our measurements, LNBIG.com can significantly improve its RoI by bounding only 1% of its
original capacity values. In Table 2, we compute the estimated optimal RoI for the central routers.

To estimate whether routers can be more profitable with an increase in traffic volume or transaction values,
we ran simulations with different values of τ and α and measured the fraction of unsuccessful payments as
well as the average length of completed payment paths.

First we vary the transaction value α with a fixed number of daily transactions τ = 5, 000. In Figures 20
and 21, we present statistics for ten central entities based on their service profiles. For example, zigzag.io
is a cryptocurrency exchange service, while ACINQ provides solutions for Bitcoin scalability. Additional
entity profiles can be found in Table 3. In Figure 20, the income for most of the nodes significantly increases
with transaction value, while this effect is almost negligible for rompert.com, LightningPowerUsers.com, and
1ML.com node ALPHA, whose behavior can be explained by charging almost only a base fee and applying
a fee rate close to zero.

The simulated amount of daily traffic for the ten central nodes is shown in Figure 21. We observe that
scalability and capacity providers LightningTo.Me, LightningPowerUsers.com, and 1ML.com node ALPHA
are responsible for forwarding a significant amount of payments irrespective of α. Probably due to the lack of
high capacity channels, the traffic of rompert.com and 1ML.com node ALPHA drop at α = 500, 000 satoshis
(≈ 41 USD). By contrast, the number of payments routed by LNBIG.com increases with payment value due
to the fact that this entity owns approximately half of all network capacity, as seen Table 1. In Figure 22, we
provide an efficiency metric for each entity by dividing estimated income by traffic volume. The efficiency
of rompert.com and LNBIG.com are surpassed by zigzag.io and yalls.org for α ≥ 60, 000 satoshis, as these
service providers have reasonable routing income relative to the number of daily forwarded transactions.
On the other hand, LightningPowerUsers.com, 1ML.com node ALPHA, and LightningTo.Me have orders of
magnitude lower efficiency than other relevant entities. They are likely not considering routing profitability,
as their transaction fees are negligible.

Next, we estimate the effect of channel depletion, which can be a side-effect of increasing the traffic
without increasing channel capacities. In a highly simplistic experiment, we compare traffic with simulated
channel depletion with the case when we allow the simulator to use channel directions without limits. We
take depletion into account by suspending depleted channels until a reverse payment reopens them. On the
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Figure 18: The remaining fraction of the original estimated daily routing income, after reducing node capac-
ities to the given fractions.
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Figure 19: RoI gain after reducing node capacities to the given fractions.

Entity name Service profile
rompert.com Provider of some Lightning Network related information
LNBIG.com Half of the total network capacity in bound by the nodes of this entity
zigzag.io Exchange Top Cryptocurrencies in seconds with low fees
yalls.org Read and write articles, with Lightning Network micropayments.
ln1.satoshilabs.com Cryptocurrency solution developers
tippin.me Send and receive Bitcoin tips on Twitter
ACINQ One of the leading companies working on Bitcoin scalability
1ML.com node ALPHA Lightning Network Search and Analysis Engine
LightningTo.Me Helping to resolve routing and capacity issues
LightningPowerUsers.com Request Inbound Capacity

Table 3: LN network entities with related service profiles.
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Figure 20: Average simulated daily routing income of some LN router entities as the function of the trans-
action value α.
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Figure 21: Average simulated daily routing traffic of some LN router entities as the function of the transaction
value α.
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Figure 23: Average simulated daily routing income (top) and the income divided by the optimistic income
when channel depletion is ignored (bottom) for some LN router entities as the function of the simulated
transaction count τ . Note that the ratio is above 1 for most nodes as they can take over routing for depleted
channels.

top of Figure 23, we show the routing income estimate with depletion taken into account for the top ten
router nodes, as the function of τ . And on the bottom of Figure 23, we show the ratio of the routing income
with and without depletion taken into account. At first glance, it is surprising that the fraction is above 1
for most of the router nodes. To explain, observe that channels with low routing fees are used and depleted
first, and these channels will loose revenue compared to the optimistic case. However, if there is an alternate
routing path with more expensive transaction fees, the owners of these channels will observe an increase in
revenue due to the depletion of low cost channels.

As we simulate more traffic or execute more expensive payments, both the fraction of unsuccessful pay-
ments and the average length of completed payment paths increase, as we show in Figure 24. Transactions
can fail in the simulation when there is no path from the source to the recipient such that the channels have
at least α available capacity. If α is too high, then only a fraction of all channels can be used for payment
routing, while in the case of an extremely large number of transactions, the available capacity of several chan-
nel directions becomes depleted. For example, channels leading to popular merchants could become blocked
in case of heavy one-directional traffic. The growth in completed payment path length is in agreement with
this scenario.

In Figure 24, we also observe that lower payment amounts do not significantly decrease the probability of a
payment being successfully routed. Hence, we do not expect that Atomic Multi-path payments (AMP)8 that
allow a sender to atomically split a payment flow amongst several individual payment flows can significantly
increase the success rate of the transactions.

A final relevant metric is the number of payments that fail if the given entity becomes unavailable. In

8See: https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
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Figure 24: Fraction of failed transactions (left) and average length of completed payment paths (right)
with respect to the simulated transaction value α and the number of sampled transactions τ .

LN
BI

G.
co

m
1M

L.
co

m
 n

od
e 

AL
PH

A
ta

dy
 je

 sl
us

ho
vo

zig
za

g.
io

Lig
ht

ni
ng

Po
we

rU
se

rs
.c

om
tip

pi
n.

m
e

ln
.B

itS
oa

pB
ox

.c
om

Co
in

Ga
te

bt
c.

ln
et

wo
rk

.to
ky

o
OR

AN
GE

SQ
UI

RR
EL

ro
m

pe
rt.

co
m

AC
IN

Q
ln

1.
sa

to
sh

ila
bs

.c
om

Bl
oc

ks
tre

am
 S

to
re

ya
lls

.o
rg

fa
irl

y.
ch

ea
p

BO
LT

EN
IN

G.
clu

b
Op

en
No

de
Bi

tre
fil

l.c
om

Sa
gi

tta
riu

s A
Lig

ht
ni

ng
To

.M
e

lig
ht

ni
ng

-ro
ul

et
te

.c
om

Th
er

e 
be

 d
ra

go
ns

 h
er

e
Bl

ue
W

al
le

t
El

ec
tro

ph
or

us
 [W

_C
_B

]0.380

0.385

0.390

0.395

0.400

0.405

0.410

0.415

0.420
original failed transaction ratio

Figure 25: The fraction of incomplete payments, out of the simulated τ = 5000 transactions, after removing
the given entity from LN. The original fraction of failed transactions 0.3823 is marked by the dashed line.

Figure 25, we show the fraction of unsuccessful payments after removing the given entity. For example, after
removing the 25 nodes of LNBIG.com from LN, the rate of failed transactions increases to 0.417 from the
original level of 0.382. Recall from Section 3.2 that a large fraction of the payments cannot be routed, since
several nodes have only disabled or no outbound channels with capacity over the simulated payment value
α.

In this section, we estimated the income of the central router nodes under various settings. Although
our experiments confirm that at the present structure and level of usage, the participation for most routing
nodes is not economical, we also foresee a potential in LN to make routing profitable with little adjustments
in pricing and capacity policies if the traffic volume will increase.

7 Payment Privacy

While LN is often considered a privacy solution for Bitcoin as it does not record every transaction in a public
ledger, the fundamentally different privacy implications of LN are often misunderstood [13, 14]. LN provides
little to no privacy for single-hop payments, since the single intermediary can de-anonymize both sender and
receiver. In this sense, the privacy guarantees of LN payment routing are quite similar in spirit to that of
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TOR.
Although the intermediary knows the sender and receiver if it knows that the payment is single-hop, the

onion routing technique [16] used in LN provides a weaker notion privacy called plausible deniability. By
onion routing, an intermediary has no information on its position in the path and the sender node can claim
that the payment was routed from one of its neighbors.

We remark that plausible deniability is also achieved for on-chain transactions by coin mixing tech-
niques. In wallets supporting coin-mixing one can regularly observe privacy-enhanced transactions with
large anonymity sets, where the identity of a sender is hidden by mixing with as many as 100 other transac-
tion senders [21]. Hence for LN to provide privacy guarantees stronger than on-chain transactions, offering
plausible deniability in itself can be insufficient.

Next we assess the strength of privacy for simulated LN payments. By our discussion, high node degrees
and long payment paths are compulsory for privacy. First, payments from low degree nodes are vulnerable,
as the immediate predecessor or successor set is too small and can allow privacy attacks for example by
investigating possible channel balances. Second, the majority of payments should be long, otherwise an
intermediary has strong statistical evidence for the source or the destination of a large number its routed
payments.

In Figure 26, we plot the fraction of nodes with sufficiently high degree to plausibly hide its payment as
to be originating from one of its neighbors. We observe that half of the nodes have five or less neighbors,
which makes their transactions vulnerable for attacks based on information either directly obtained from
its neighbors, or inferred through investigating channel capacities. Furthermore, privacy guarantees are
worsened as the value of the payment increases, since we can exclude payment channels from payment source
candidates with capacity less than the payment value.

Next, we investigate the possible length of payment paths and the trade-off between length and cost. Note
that the source has control over the payment path, hence it can deliberately select long paths to maintain
its privacy, however this can result in increased costs.

The topological properties of LN, namely, its small-world nature, allow for very short payment path
lengths. The average shortest path length of LN is around 2.8 [32], meaning that most payment routes
involve one or two intermediaries. This phenomenon is further exacerbated by the client software, which
prefers choosing shortest paths9, resulting in a considerable fraction of single-hop transactions. However, we
note that newer advancements in LN client softwares, e.g. c-lightning, incorporate solutions to decrease the
portion of single-hop payments 10

Loosely connecting to merchants and paying them only via routing facilitated by intermediaries is advan-
tageous not just for privacy considerations but also for reducing the required number of payment channels,
and thus limiting the amount that needs to be committed. By contrast, our measurements in Figure 9 show
that nodes seem to prefer opening direct links to other nodes and especially to merchant nodes. The figure
is obtained by computing the shortest path length between u and v for each new edge (u, v) immediately
before the new edge was created. If there is no such path, i.e., u and v lie in different connected components,
we assign ∞ to the edge.

Simulations reveal that on average 16% of the payments are single-hop payments, see Figure 28. By
increasing the fraction of merchants among receivers, this fraction increases to 34%, meaning that strong
statistical evidence can be gathered on the payment source and destination through the router node for more
than one third of the LN payments. We note that in practice, the ratio of de-anonymizable transactions
might be even larger, since payments with longer routes can also be de-anonymized if all the router nodes
correspond to the same company.

In our final experiment, we estimate the payment fee increase by using longer paths in the existing
network, based on the assumption that privacy-enhanced routed payments could be achieved by deliberately
selecting longer payment routes. While paths of length more than a predefined number can be found in
polynominal time [4], the algorithm is quite complex and in our case needs enhancements to use the edge
costs. Hence, to simplify the experiment, we implemented a genetic algorithm that injects additional hops
into initial lowest cost paths generated by our simulator, and finally selects the lowest cost path it finds for
a prescribed length. In Figure 29, we observe that we can find routing paths that only marginally increase
the median cost of the transactions by selecting paths of length up to six.

In summary, we observed the very small world nature of LN, which is in contrast to the fact that privacy-
aware payment routing could be achieved by deliberately selecting longer payment routes. The fact that many
channel openings are triangle closing could suggest the unreliability of payment routing in LN. Another reason
for the creation of triangle-closing payment channels can also be the possibility to inject additional hops to
preserve transaction privacy, which, by our simulation, is a low additional cost solution to enhancing privacy.

9Source: https://github.com/lightningnetwork/lnd/blob/40d63d5b4e317a4acca2818f4d5257271d4ac2c7/routing/

pathfind.go
10Source: https://github.com/ElementsProject/lightning/commit/d23650d2edbfe16a21d0e637e507531a60dd2ddd.
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Overall, we raised questions about the popular belief of the LN community that LN payments provide
superior privacy than on-chain transactions. We believe that deliberately longer payment paths are required
to maintain payment privacy, which does not drastically increase costs at the current level of transaction
fees.
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Figure 29: Median sender costs in satoshis for fixed path length routing.

8 Conclusion

In this work, we analyzed Lightning Network, Bitcoin’s payment channel network from a network scientific
and cryptoeconomic point of view. Past results on the Lightning Network were unable to analyze the
fee and revenue structure, as the data on the actual payments and amounts is strictly private. Our main
contribution is an open-source LN traffic simulator that enables research on the cryptoeconomic consequences
of the network topology without requiring information on the actual financial flow over the network. The
simulator can incorporate the assumption that the payments are mostly targeted towards the merchants
identified by using the tags provided by node owners. We validated some key parameters of the simulator
such as traffic volume and amount by simulating the revenue of central router nodes and comparing the
results with information published by certain node owners. By using our open source tool, we encourage
node owners to build more accurate estimates of LN properties by incorporating their private knowledge on
usage patterns.

Our simulator provided us with two main insights. First, the participation of most router nodes in LN is
economically irrational with the present fee structure; however, signs of sustainability are seen with increased
overall traffic volume over the network. By contrast, at the present level of usage, if routers start acting
rationally, payment fees will rise significantly, which might harm one of LN’s core value propositions, namely,
negligible fees. Second, the topological properties of LN make a considerable fraction of payments easily
de-anonymizable. However, with the present fee structure, paths can be obfuscated by injecting extra hops
with low cost to enhance payment privacy.

We release the source code of our simulator for further research at https://github.com/ferencberes/
LNTrafficSimulator.
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